विज्ञापन:
प्रो। रॉबर्ट सी। मेट्रोन और प्रो। मायरोन एस। स्कोल्स को 1997 में अर्थशास्त्र के नोबेल पुरस्कार से सम्मानित किया गया है, जो डेरिवेटिव और अन्य स्टॉक विकल्पों के मूल्यांकन के लिए एक अग्रणी सूत्र विकसित किया है। वास्तव में, उन्होंने प्रो। फिशर ब्लैक के साथ मिलकर इस पद्धति को विकसित किया, जिसकी 1995 में मृत्यु हो गई।
1973 में ब्लैक एंड स्कोल्स ने जो प्रकाशित किया उसे ब्लैक-स्कोल्स फॉर्मूला के रूप में जाना जाने लगा। प्रो मेट्रोन ने इस पर विकास किया और व्यापक प्रयोज्यता के सूत्र को प्राप्त करने के लिए एक और विधि तैयार की।
आजकल, दुनिया भर के बाजारों में स्टॉक विकल्प के मूल्य के लिए हजारों व्यापारी और निवेशक हर दिन सूत्र का उपयोग करते हैं। ब्लैक, मेट्रोन और स्कोल्स ने यह दिखाते हुए एक महत्वपूर्ण योगदान दिया कि वास्तव में किसी विकल्प का मूल्यांकन करते समय किसी भी जोखिम प्रीमियम का उपयोग करना आवश्यक नहीं है। इसका मतलब यह नहीं है कि जोखिम प्रीमियम गायब हो जाता है, लेकिन यह स्टॉक मूल्य में पहले से ही रेटेड है।
विज्ञापन:
यूरोपीय कॉल के मूल्यांकन के लिए ब्लैक-स्कोल्स मॉडल है:
सी = एसएन (डी)1) - एक्सई-r (टी 1)एन (घ2)
C = कॉल विकल्प प्रीमियम
विज्ञापन:
एस = वर्तमान संपत्ति मूल्य
एक्स = व्यायाम मूल्य
Tt = एक वर्ष के दशमलव में समाप्ति का समय
विज्ञापन:
σ = दशमलव के वार्षिक मूल्य के प्राकृतिक लॉग का वार्षिक मानक विचलन दशमलव में
ln = प्राकृतिक लघुगणक
एन (घ1) = संचयी मानक सामान्य संभावना वितरण।
घ1 और डी2 = मानकीकृत सामान्य चर
विज्ञापन:
दशमलव में ब्याज की जोखिम रहित दर (निरंतर चक्रवृद्धि)
ब्लैक-स्कोल्स मॉडल की मान्यताओं:
अपने विकल्प मूल्य निर्धारण मॉडल को प्राप्त करने में, जो कॉल विकल्प के मूल्य की गणना करता है, ब्लैक एंड स्कोल्स ने निम्नलिखित धारणाएं बनाईं:
1. कॉल विकल्प में अंतर्निहित स्टॉक विकल्प के जीवन के दौरान कोई लाभांश नहीं देता है।
2. स्टॉक या विकल्प खरीदने या बेचने में कोई लेनदेन लागत नहीं है।
विज्ञापन:
3. विकल्प के जीवन के दौरान अल्पकालिक, जोखिम मुक्त ब्याज दर को निरंतर जाना जाता है।
4. सुरक्षा का कोई भी खरीदार अल्पकालिक, जोखिम मुक्त ब्याज दर पर खरीद मूल्य के किसी भी अंश को उधार ले सकता है।
5. बिना किसी दंड के लघु बिक्री की अनुमति है, और लघु विक्रेता को तुरंत बेची गई सुरक्षा के लिए पूर्ण नकद आय प्राप्त होगी।
6. सभी प्रतिभूतियों में ट्रेडिंग निरंतर समय में होती है, और स्टॉक की कीमत निरंतर समय में बेतरतीब ढंग से चलती है।
विज्ञापन:
ब्लैक स्कोल्स सूत्र को इस सिद्धांत से विकसित किया गया है कि विकल्प स्टॉक पोर्टफोलियो से बाजार के जोखिम को पूरी तरह से समाप्त कर सकते हैं। ब्लैक एंड स्कोल्स ने कहा कि इस हेजेड स्थिति में स्टॉक के विकल्पों के अनुपात को लगातार संशोधित किया जाता है क्योंकि विकल्पों पर नुकसान या लाभ द्वारा स्टॉक पर लाभ या हानि को ऑफसेट करने के लिए कोई कमीशन लागत नहीं होती है। क्योंकि स्थिति सैद्धांतिक रूप से जोखिम रहित है, हम उम्मीद करेंगे कि जोखिम मुक्त दर, पूंजीगत परिसंपत्ति मूल्य निर्धारण मॉडल (CAPM) को प्राप्त करने में लगाई गई धारणा के अनुरूप कुछ हो।
यह देखते हुए कि जोखिम-मुक्त हेज को जोखिम-मुक्त दर अर्जित करनी चाहिए, हम अनुमान लगाते हैं कि विकल्प प्रीमियम जिस पर हेज जोखिम-मुक्त अल्पकालिक ब्याज दर के बराबर रिटर्न देता है वह उचित मूल्य है, जोखिम से वापसी मुक्त बचाव स्थिति जोखिम मुक्त ब्याज दर से भिन्न हो सकती है। क्योंकि यह संतुलन के साथ असंगत है, हम विकल्प मूल्य को उचित मूल्य की ओर समायोजित करने की अपेक्षा करेंगे।
मुसीबत:
वर्तमान संपत्ति की कीमत 35.0 है, व्यायाम की कीमत 35.0 है, ब्याज मुक्त जोखिम दर 10% है, अस्थिरता 20% है और समाप्ति का समय एक वर्ष है। इस प्रकार एस = 35, एक्स = 35, (टी -1) = 1.0, आर = 0.1 और 0.2 = 0.2।
विज्ञापन:
उपाय:
सबसे पहले, हम घ की गणना करते हैं1, फिर डी2 और, अंत में, व्यायाम मूल्य Xe का वर्तमान मूल्य -r (TT)
उपाय:
यहाँ, डी1 एक मानकीकृत सामान्य यादृच्छिक चर N (d) है1) संचयी मानकीकृत सामान्य संभाव्यता वितरण है। यह जेड से मानकीकृत सामान्य वक्र के तहत क्षेत्र का प्रतिनिधित्व करता है।
मानकीकृत सामान्य वितरण पर पुस्तक के अंत में दी गई गणितीय तालिका का हवाला देकर हम एन (डी) के मूल्यों पर पहुंच सकते हैं1) और एन (डी2) निम्नलिखित नुसार:
विज्ञापन:
N का मान (d)1) जब डी1 = 0.6 0.7257 है
N का मान (d)2) जब डी2 = 0.4 0.6554 है
जब उपरोक्त मान समीकरण में प्रतिस्थापित किए जाते हैं, तब
c = 35 (0.7257) - 31.6693 (0.6554) = 4.6434